

Powerful Advanced N-Level Digital Architecture for models of electrified vehicles and their components

https://project-panda.eu/

Research Innovation Action

GA #824256

EUROPEAN COMMISSION Horizon 2020 | GV-02-2018

Virtual product development and production of all types of electrified vehicles and components

Deliverable No.	PANDA D3.3	
Deliverable Title	Cloud-computing real testing of e-drives	
Deliverable Date		
Deliverable Type	REPORT	
Dissemination level	Confidential – member only (CO)	
Written By	Sergio COSTA (TY)	2022-04-24
	Calin HUSAR (SISW)	
	Mircea RUBA (UTCN)	
	Florian TOURNEZ (ULille),	
	Marius CIOCAN (SISW)	
	Claudia MARTIS (UTCN)	
	Alain BOUSCAYROL (ULille)	
Checked by	Walter LHOMME (Ulille)	2022-05-10
	Marius CIOCAN (SISW)	2022-05-10
Approved by	Alain BOUSCAYROL (Ulille)	2022-05-11
Status	Final version	2022-05-11

Publishable Executive Summary

PANDA develops a uniform organization of models of electrified vehicles and a common cloud of models for virtual testing (pure simulation) and real testing (power hardware-in-the-loop - P-HiL - testing) of their components. In WP4, a BEV, a FCV and a P-HEV have been virtually tested using this method and the cloud of models. In WP5, these models have been used in real-time for the P-HiL testing of the battery, the edrive, and the e-subsystems of the studied P-HEV. But these tests were achieved in stand-alone P-HiL, uploading the models in a local real-time ECU.

In this report, the cloud-based P-HiL testing of e-drives for the BEV and the P-HEV, reference vehicles of PANDA, is described. The same local real-time ECU (Typhoon) and the same cloud using Simcenter AMESIM © (SISW) are connected by an Ethernet connection to link the local real-time simulator and the Cloud. An e-drive has been tested for the BEV at Cluj-Napoca with the experimental equipment of UTCN. And the 2 e-drives of the P-HEV have been tested at Lille with the experimental equipment of ULille. Despite the difference in the e-drives under test, power interfaces and vehicle models, the cloud-based P-HiL tests were successful using a common procedure. This point demonstrates the ability of the PANDA method to operate with different set-ups, and shows also the interest in sharing a cloud of models.

In Cluj-Napoca, the real-time simulator only contains the power adaptation and rest of the model of the BEV is simulated in a cloud server. In Lille, the real-time simulator contains a battery model and the power adaptation while the rest of the model of the P-HEV is simulated in the cloud.

It can be highlighted that both tests have been developed in parallel in a fast and easy way because of the PANDA methodology. First, the real-time ECU and the same cloud-based simulation are used that enables sharing experiences. Second, the EMR organization of the model enables a clear and fair decomposition of the models and different splitting solutions have been tested quickly thanks to the fixed I/Os between the different parts of the models and the control.

Acknowledgement

The author(s) would like to thank the partners in the project for their valuable comments on previous drafts and for performing the review.

Table 1: Project Partners

#	Туре	Partner	Partner Full Name
1	UNIV	ULille	Université de Lille
2	IND	SISW	Siemens Industry Software SRL
3	UNIV	VUB	Vrije Universiteit Brussels
4	IND	VEEM	VALEO Equipement Electriques Moteur SAS
5	UNIV	UTCN	Universitatea Tehnica Cluj Napoca
6	SME	TY	Tajfun HIL d.o.o. (Typhoon HIL)
7			
8	UNIV	UBFC	Université Bourgogne Franche-Comté
9	SME	UNR	Uniresearch BV
10	IND	RTR	Renault Technologie Roumanie
11	SME	Bluways	BlueWays International bva
12	IND	TUV-BT	TUV SUD Battery Testing Gmbh

This project has received funding from the European Union's Horizon2020 research and innovation programme under Grant Agreement no. 824256.