

Powerful Advanced N-Level Digital Architecture for models of electrified vehicles and their components

https://project-panda.eu/

#### **Research Innovation Action**

GA #824256

### EUROPEAN COMMISSION Horizon 2020 | GV-02-2018

Virtual product development and production of all types of electrified vehicles and components

| Deliverable No.     | PANDA D5.3                                                                                |                          |
|---------------------|-------------------------------------------------------------------------------------------|--------------------------|
| Deliverable Title   | Real test of the electrical subsystem of the HEV                                          |                          |
| Deliverable Date    | 2021-12-31                                                                                |                          |
| Deliverable Type    | REPORT                                                                                    |                          |
| Dissemination level | CO (Confidential)                                                                         |                          |
| Written By          | Walter LHOMME (ULille) – T5.3 leader<br>Florian TOURNEZ (ULille)<br>Sylvain ROQUET (VEEM) | 2022-01-14               |
| Checked by          | Aurélien LIEVRE (VEEM) – WP5 leader                                                       | 2022-01-19               |
| Reviewed by         | Calin HUSAR (SISW)<br>Ronan GERMAN (ULille)                                               | 2022-02-01<br>2022-02-01 |
| Approved by         | Alain BOUSCAYROL (ULille) – Technical coordinator                                         | 2022-01-30               |
| Status              | Final version                                                                             | 2022-02-07               |

## **Publishable Executive Summary**

Leader: Dr. Walter LHOMME (ULille), Participants: VEEM

The PANDA project aims at using the W-model approach, which relies strongly on virtual design and test methods, to reduce the electrified vehicles time-to-market. The project proposes a standard efficient virtual and real testing method of electrified vehicles and will provide a Cloud library of functional models to be accessible by multiregional companies [PANDA 2020]. In this context, building multi-scale multi-physical models of the electrical subsystem is an essential part of the project.

This deliverable describes the work done in WP5 for the task 5.3 on the real e-subsystem of the studied plug-in hybrid electric vehicle, which is composed of the 48 V battery and two electrical drives, at the front and at the rear axles. Two different real tests have been achieved using the power hardware-in-the-loop method. The real-time simulation of the traction subsystem is realized from the energetic macroscopic representation of the vehicle developed in WP4. The first test has been achieved at full power, i.e. full-scale, at VEEM using the real rear e-drive and the real battery. A second test has been achieved without the battery on the versatile experimental platform of ULille, using two reduced power electrical machines and inverters (reduced-scale test). Moreover, both dSPACE and Typhoon controller boards were used as real-time simulators. The simulation models were derived from MATLAB Simulink © and Simcenter AMESIM © using EMR libraries. All tests were realized in stand-alone controller board, i.e. all real-time models are simulated locally without cloud connection.

Both full-scale and reduced-scale tests lead to similar results, which demonstrate the portability of the method for different electrical subsystem. Moreover, two kinds of simulation packages and real-time simulators have been used for the real test of the e-subsystem. This demonstrates the flexibility of the PANDA method.

#### Contributions:

| No | Who                       | Description                                            |
|----|---------------------------|--------------------------------------------------------|
| 1  | Walter LHOMME (ULille)    | Task leader and writing                                |
| 2  | Florian TOURNEZ (ULille)  | Simulation tests Experimental tests at VEEM and ULille |
| 3  | Sylvain ROQUET (VEEM)     | Experimental tests at VEEM                             |
| 4  | Alain BOUSCAYROL (ULille) | Revisions                                              |

# Acknowledgement

The authors would like to thank the partners in the project for their valuable comments on previous drafts and for reviewing this document.

Table 2: Project Partners

| #  | Туре | Partner | Partner Full Name                       |
|----|------|---------|-----------------------------------------|
| 1  | UNIV | ULille  | Université de Lille                     |
| 2  | IND  | SISW    | Siemens Industry Software SRL           |
| 3  | UNIV | VUB     | Vrije Universiteit Brussels             |
| 4  | IND  | VEEM    | VALEO Equipement Electriques Moteur SAS |
| 5  | UNIV | UTCN    | Universitatea Tehnica Cluj Napoca       |
| 6  | SME  | TY      | Tajfun HiL (Typhoon HiL)                |
| 7  |      |         | (change of TUV by TUV-BT)               |
| 8  | UNIV | UBFC    | Université Bourgogne Franche-Comté      |
| 9  | SME  | UNR     | Uniresearch BV                          |
| 10 | IND  | RTR     | Renault Technologie Roumanie            |
| 11 | SME  | Bluways | BlueWays International bva              |
| 12 | IND  | TUV-BT  | TUV SUD Battery Testing Gmbh            |



This project has received funding from the European Union's Horizon2020 research and innovation program under Grant Agreement no. 824256.