

Powerful Advanced N-Level Digital Architecture for models of electrified vehicles and their components

Workshop PANDA

Energetic macroscopic representation

Eduard-Edis RACLARU Siemens Industry Software

Complex systems

Complex multi-physical systems : Electric vehicles

Renault Zoe Credit: Renault

- How to manage the various power flows?
- How to optimize the energy consumption?

System simulation

- How to build a performant and accurate simulation?
- How to reduce the development time?

Slide 3

Outline

1. Multi-physics systems

2. Energetic macroscopic representation

3. Control strategy based on the EMR

4. Conclusions

System, model, representation, simulation

System, model, representation, simulation

Energetic macroscopic representation

EMR is a Graphical description / Model organization

Slide 8

Graphical system representations

Structural descriptions for analysis and design:

- Bond graphs
- Power orientated graphs
- Signal flow diagrams

Functional descriptions for simulation and control:

- Block diagrams
- Causal orientated graphs
- Energetic macroscopic representation

Limitations of block diagrams

Block diagrams:

- Do not highlight energy properties.
- Do not highlight interactions between subsystems.
- Can be confusing for complex multi-physics systems.

Systems and interactions

How to structure complex multi-physics systems?

System = interconnected subsystems, organized for a common objective

Holistic property = new global property induced by association of subsystems

Physical interaction

Choice of input/output roles for the interconnection variables:

Energy and causality

Example:

Slide 14

EMR

- Highlights energy properties.
- Highlights interaction between systems.
- Respects physical causality.

« Energetic macroscopic Representation »

5

0

5

0

12

0

5

5

.

5

.

1

0

Slide 16

-

PANDA - GA 824256

<u>ب</u>

.

EMR basic elements

EMR uses only 4 functions to describe energy conversion systems:

- Energy sources.
- Energy accumulation.
- Energy conversion.
- Energy distribution.

Energy sources

Terminal element which represents the environment of the studied system.

Generator and/ or receptor of energy

Accumulation elements

Accumulator

Internal accumulation of energy (with or without losses)

Output(s) = Integral Input(s)

Fixed I/O (causal description)

Energy sources

conversion element

Conversion of energy without accumulation (with or without losses) I/O can be permuted (floating I/O)

Possible tuning input variable

Gearbox

Energy sources

coupling element

Distribution of energy

without energy accumulation,

without tuning variable,

with or without losses

Field winding DC machine

Slide 21

EMR properties

Energy source

Energy accumulation

Energy conversion (potential tuning)

The diagram of the entire system is made by interconnecting the components.

- Highlight energetic functions
- All elements are connected by action/reaction (power link) (systemic approach)
- All power I/O are defined by accumulation elements (causality)
- Only conversion elements can have tuning inputs

Energy distribution

Valuable for control design

« Control strategy based on the EMR »

.

ł

-

Control strategy based on the EMR

Control strategy based on the EMR

Slide 25

Open-loop control

Not appropriate for plant control, if used by its own.

Could prove to be efficient, when used in combination with closed-loop control.

Helpful for linearizing nonlinear systems.

Closed-loop control

Control objectives:

- Ensure stability
- Track references
- Reject disturbances
- Handle model uncertainties

Inversion based control (principle)

control = inversion of the causal path

Inversion based control (principle)

	control = inversion of the causal path	
Which control structur	re?	
Which variables to me	asure?	

EMR properties

Systemics approach (EMR): look at the structure of the system.

Construct a reference signal chain for the causal path (<u>cascaded control</u>) step by step.

When to use open-loop or closed-loop control?

Which variables to measure?

Inversion of EMR elements

Slide 32

1. EMR of the system

Slide 34

- 1. EMR of the system
- 2. Tuning path

Slide 35

- 1. EMR of the system
- 2. Tuning path
- 3. Inversion-based control

Conclusions

- Better analysis of simulation results, e.g. than with block diagram, for multi-physics systems.
- Helpful for clients to model/test/design etc., their products.
- Supports efficient energy use designs according to customer specifications.
- Provides a distributed (cascaded) control strategy for complex systems.

References

[1] A. Bouscayrol, J.-P. Hautier, and B. Lemaire-Semail, "Graphic formalism for the control of multi-physiscal energetic systems: COG and EMR," in *Systemic Design Methodologies for Electrical Energy Systems*, New York, NY, USA, Wiley, ch. 3 2012.

[2] J.P. Hautier, P.J. Barre, « The causal ordering graph – A tool for modeling and control law synthesis", *Studies in Informatics and Control Journal*, vol. 13, no. 4, pp. 265-283, 2004.

[3] EMR. [Online], available: http://www.emrwebsite.org/

End of presentation

www.project-panda.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824256.