Final Event 24-25th of May 2022

Validations

Powerful Advanced N-Level Digital Architecture for models of electrified vehicles and their components

Fuel Cell vehicle virtual model

Fei Gao & Daniela Chrenko

Université Bourgogne Franche-Comté University of Technology of Belfort-Montbeliard

Fuel Cell Vehicle (FCV) description

6/6/2022

- Mobypost: fuel cell vehicle developed by UBFC for the postal delivery application;
- Hydrogen: the electric energy generated by photovoltaic to realize electrolysis of water;
- ☺ Primary/secondary sources: fuel cell/ Li-ion battery.

	Number of seats	1	Electric motor technology	In-wheel PMSM	
	Weight (kg)	579	Electric motor nominal power (kW)	2	
	Fuel cell type	PEMFC	Electric motor peak torque (Nm) / maximum rpm	160 / 520	
	Fuel cell power (kW)	1.0	Battery Technology	Lithium-ion	
	Top speed (km/h)	60	Numbers of battery module	4	
-	Wheelbase (mm)	270	Nominal module voltage (V)	12.8	
Sli	Weight (kg)	579	Nominal capacity (Ah)	110	

EMR model of Mobypost

Simcenter Amesim © implementation of Mobypost EMR model

- Driving cycle is collected based on the daily postal delivery track from La Poste;
- Ims fixed time-step solver for the driving cycle from 0 to 10800s (3 hours).

Results show accurate predictability power of the developed models, though having small differences

Conclusion

- ◎ Mobypost FCV modelled and organized using the EMR formalism
- ◎ Mobypost FCV tested in a 3-hour driving cycle to cover the most use cases
- ◎ 5% error for the battery energy and 2% error for the DC bus energy
- In a straight of the strai
- ◎ FCV virtual model as efficient tool for the system/component design and testing

Thanks for your attention!

www.project-panda.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824256.

Approach of the FCV model development

Sor model

Develop a N-level model organization; Different models are developed for the same subsystem;

Dynamical models (for transient states), static models (only for steady states) and quasi-static.

For representation

Functional description is imposed to avoid the need of co-simulation; Using pure causality that leads to the reduction of the computation time; EMR formalism is selected.

For simulation

Functional approach is used by adaptation of actual simulation packages; Forward approach for dynamic models; Backward approach for generally static or quasi-static models.

Simulation and validation using Matlab-Simulink

- Driving cycle of Mobypost is the input of the simulation;
- ☺ The fuel cell and battery are operating under the control of EMS;
- EMR of Mobypost is implemented in Simulink© environment (1ms time-step).

 \odot

Simulation and validation using Matlab-Simulink

© Errors between experimental results and simulation results are very small

Simcenter Amesim implementation of Mobypost EMR model

- Driving cycle is collected based on the daily postal delivery track from La Poste;
- Ims fixed time-step solver for the driving cycle from 0 to 10800s (3 hours).

Results show accurate predictability power of the developed models, though having small differences

